2,314 research outputs found

    Development of space-syaple thermal-control coatings triannual report, jan. 20 - may 20, 1965

    Get PDF
    Development of stable thermal control coatings with low solar absorptance to infrared emittance rati

    Model-independent Limits from Spin-dependent WIMP Dark Matter Experiments

    Full text link
    Spin-dependent WIMP searches have traditionally presented results within an odd group approximation and by suppressing one of the spin-dependent interaction cross sections. We here elaborate on a model-independent analysis in which spin-dependent interactions with both protons and neutrons are simultaneously considered. Within this approach, equivalent current limits on the WIMP-nucleon interaction at WIMP mass of 50 GeV/c2^{2} are either σp≤0.7\sigma_{p}\leq0.7 pb, σn≤0.2\sigma_{n}\leq0.2 pb or ∣ap∣≤0.4|a_{p}|\leq0.4, ∣an∣≤0.7|a_{n}|\leq0.7 depending on the choice of cross section or coupling strength representation. These limits become less restrictive for either larger or smaller masses; they are less restrictive than those from the traditional odd group approximation regardless of WIMP mass. Combination of experimental results are seen to produce significantly more restrictive limits than those obtained from any single experiment. Experiments traditionally considered spin-independent are moreover found to severely limit the spin-dependent phase space. The extension of this analysis to the case of positive signal experiments is explored.Comment: 12 pages, 12 figures, submitted to Phys. Rev.

    Solution of two-center time-dependent Dirac equation in spherical coordinates: Application of the multipole expansion of the electron-nuclei interaction

    Full text link
    A non-perturbative approach to the solution of the time-dependent, two-center Dirac equation is presented with a special emphasis on the proper treatment of the potential of the nuclei. In order to account for the full multipole expansion of this potential, we express eigenfunctions of the two-center Hamiltonian in terms of well-known solutions of the "monopole" problem that employs solely the spherically-symmetric part of the interaction. When combined with the coupled-channel method, such a wavefunction-expansion technique allows for an accurate description of the electron dynamics in the field of moving ions for a wide range of internuclear distances. To illustrate the applicability of the proposed approach, the probabilities of the K- as well as L- shell ionization of hydrogen-like ions in the course of nuclear alpha-decay and slow ion-ion collisions have been calculated

    Measurement of the Hyperfine Structure and Isotope Shifts of the 3s23p2 3P2 to 3s3p3 3Do3 Transition in Silicon

    Full text link
    The hyperfine structure and isotope shifts of the 3s23p2 3P2 to 3s3p3 3Do3 transition in silicon have been measured. The transition at 221.7 nm was studied by laser induced fluorescence in an atomic Si beam. For 29Si, the hyperfine A constant for the 3s23p2 3P2 level was determined to be -160.1+-1.3 MHz (1 sigma error), and the A constant for the 3s3p3 3Do3 level is -532.9+-0.6 MHz. This is the first time that these constants were measured. The isotope shifts (relative to the abundant isotope 28Si) of the transition were determined to be 1753.3+-1.1 MHz for 29Si and 3359.9+-0.6 MHz for 30Si. This is an improvement by about two orders of magnitude over a previous measurement. From these results we are able to predict the hyperfine structure and isotope shift of the radioactive 31Si atom, which is of interest in building a scalable quantum computer

    Dynamical approach to heavy-ion induced fission using actinide target nuclei at energies around the Coulomb barrier

    Full text link
    In order to describe heavy-ion fusion reactions around the Coulomb barrier with an actinide target nucleus, we propose a model which combines the coupled-channels approach and a fluctuation-dissipation model for dynamical calculations. This model takes into account couplings to the collective states of the interacting nuclei in the penetration of the Coulomb barrier and the subsequent dynamical evolution of a nuclear shape from the contact configuration. In the fluctuation-dissipation model with a Langevin equation, the effect of nuclear orientation at the initial impact on the prolately deformed target nucleus is considered. Fusion-fission, quasi-fission and deep quasi-fission are separated as different Langevin trajectories on the potential energy surface. Using this model, we analyze the experimental data for the mass distribution of fission fragments (MDFF) in the reactions of 34,36^{34,36}S+238^{238}U and 30^{30}Si+238^{238}U at several incident energies around the Coulomb barrier. We find that the time scale in the quasi-fission as well as the deformation of fission fragments at the scission point are different between the 30^{30}Si+238^{238}U and 36^{36}S+238^{238}U systems, causing different mass asymmetries of the quasi-fission.Comment: 11 figure

    Phenomenological description of the states 0+0^+ and 2+2^+ in some even-even nuclei

    Full text link
    A sixth-order quadrupole boson Hamiltonian is used to describe the states 0+0^+ and 2+2^+ identified in several nuclei by various types of experiments. Two alternative descriptions of energy levels are proposed. One corresponds to a semi-classical approach of the model Hamiltonian while the other one provides the exact eigenvalues. Both procedures yield close formulas for energies. The first procedure involves four parameters, while the second involves a compact formula with five parameters. In each case the parameters are fixed by a least-square fit procedure. Applications are performed for eight even-even nuclei. Both methods yield results which are in a surprisingly good agreement with the experimental data. We give also our predicted reduced transition probabilities within the two approaches, although the corresponding experimental data are not yet available.Comment: 27pages, 18 figure

    Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z=~122 in natural Th

    Full text link
    Evidence for the existence of a superheavy nucleus with atomic mass number A=292 and abundance (1-10)x10^(-12) relative to 232Th has been found in a study of natural Th using inductively coupled plasma-sector field mass spectrometry. The measured mass matches the predictions [1,2] for the mass of an isotope with atomic number Z=122 or a nearby element. Its estimated half-life of t1/2 >= 10^8 y suggests that a long-lived isomeric state exists in this isotope. The possibility that it might belong to a new class of long-lived high spin super- and hyperdeformed isomeric states is discussed.[3-6]Comment: 14 pages, 5 figure

    Rotational energy term in the empirical formula for the yrast energies in even-even nuclei

    Full text link
    We show that part of the empirical formula describing the gross features of the measured yrast energies of the natural parity even multipole states for even-even nuclei can be related to the rotational energy of nuclei. When the first term of the empirical formula, αA−γ\alpha A^{-\gamma}, is regarded as the otational energy, we can better understand the results of the previous analyses of the excitation energies. We show that the values of the parameters α\alpha and γ\gamma newly obtained by considering the αA−γ\alpha A^{-\gamma} term as the rotational energy of a rigid rotor are remarkably consistent with those values extracted from the earlier `modified' χ2\chi^2 analyses, in which we use the logarithms of the excitation energies in defining the `modified' χ2\chi^2 values

    Level densities and γ\gamma-ray strength functions in 170,171,172^{170,171,172}Yb

    Full text link
    Level densities and radiative strength functions in 171^{171}Yb and 170^{170}Yb nuclei have been measured using the 171^{171}Yb(3^3He,3^3He′γ^\prime\gamma)171^{171}Yb and 171^{171}Yb(3^3He,αγ\alpha\gamma)170^{170}Yb reactions. New data on 171^{171}Yb are compared to a previous measurement for 171^{171}Yb from the 172^{172}Yb(3^3He,αγ\alpha\gamma)171^{171}Yb reaction. Systematics of level densities and radiative strength functions in 170,171,172^{170,171,172}Yb are established. The entropy excess in 171^{171}Yb relative to the even-even nuclei 170,172^{170,172}Yb due to the unpaired neutron quasiparticle is found to be approximately 2kBk_B. Results for the radiative strength function from the two reactions lead to consistent parameters characterizing the ``pygmy'' resonances. Pygmy resonances in the 170,172^{170,172}Yb populated by the (3^3He,α\alpha) reaction appear to be split into two components for both of which a complete set of resonance parameters are obtained.Comment: 8 pages, 7 figure
    • …
    corecore